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ABSTRACT

The objective of this paper is to summarize the current
understanding of quantum detectors, the noise mechanisms which are
basic to their operation, and the épplication to optical communication
theory. In this context we are considering channels in which the
Electromagnetic field is not subjected to any propagation effects
other than a geometric loss., (Such a channel would exist between
satellites.) Consequently, we will concentrate on optimum time pro-
cessing using the tools of statistical communication theory.

Fundamental to the study of a detection process is the need

[1-6]

to develop a good mathematical model to describe it. Therefore,
approximately one-fifth of the paper is devoted to establishing in a
semi-classical analysis the quantum detector output electron number
as a conditional Poisson process withthe conditioning variable being
the modulus of the electromagnetic field. Once this has been estab-
lished, these results are used to derive various limiting probability
densities related to actual practice. Although the mathematical
details are omitted, this will be presented from the viewpoint of
orthogonal function expansions and interpreted in terms of an eigen-
space.

The resulting current flow is next analyzed as a shot noise

process and the power density spectrum is calculated. Attention is




focused on isolating the signal components from the noise in terms of
both the current probability density and the power density spectrum,
Examples are given where appropriate. At this point an understanding
of the underlying noise processes will have been presented and atten-
tion will shift to analog and digital communications,

The analog communication will be presented primarily in
terms of the signal-to-noise ratio although some attention will be
given to continuous estimation. The S/N ratio in direct detection will
be presented both as a ratio of the integrals of two separate portions
of the spectrum and as a ratié of two moments of the probability den-
sity describing the current. These calculations will be extended to
include heterodyne detection,

Digital communications will be discussed in the context of
detect‘ion theory. It will be shown that the likelihood ratio is often a
monotonic function of the random variable representing the number of
electrons flowing. Hence optimum processing will consist of a
weighted count of electrons from various counting modes. Digital
design will be presented in terms of M-ary signalling, error prob-

abilitites, and information rates,




I. INTRODUCTION

We begin with a classical description for the energy and
momentum densities of a radiation field for both the single- and
nmulti-mode cases. Confining our treatment to the semi-classical
theory, we sketch bricfly the argument that the probability of
ejecting an electron from a photo-cathode surface in a short
time interval is proportional to the light intensity. From this
point of view, we deduce an expression for the probability of
releasing n photoelectrons in a time T in terms of a weighted
Poisson distribution. The weight factor is the probability distri-
bution for the accumulated energy received on the photodetective
surface in equal times.

Semi~-Classical Theory

(A) Normal Mode Decomposition of the Field.- We begin our

description of the semi-classical theory of radiation and matter
by writing down the free space wave equation for the vector

. > > :
potential A(r,t),

2>
VZX-—%B——%=0 | . (1)
c” 9t

Electing to work in the Coulomb gauge, div A = 0, the electric

and magnetic field vectors are now given by:

-3
B = - 92
E = t
(2)
% = curl A




Concentrating first on a single mode of the radiation fiecld, a

plane wave is characterized by the components of the wave vector

-3

k = (k,, k., k,) where w = |k|c. However, even after specifying

X' Ty
the direction and freguency of a planc electromagnetic wave,

there still exists the posibility of two, independent, orthogonal

¢q and Oy
A plane wave, then, at freguency w propagating in the direc-

tion k can be writien as:

polarization directions,

(a) A(f,t) = g(t)eiﬁ r + a (t)e"iﬁ'nli
b B e 2eRE L i) N
where Z = (algl + azgz)e—iwt

It will also.tufn out to be useful to list the energy density u

plus the linear and angular momentum densitiesl§:and m associated

with this wave.

E-D + B-H 2 2
M= S = 2u eola!
x e . 2u%e
X A
g = E“g—g = - 12 (R x curl X) = S 0 |a|2k (4)
c uoc
> 1 3.z 2 2
m = > (A x A) = 2we (|b, [° - |b_[9k
UaC
0
where /3
_ V2
bi = = (al * 1a2)




We are following here the notation of Louisell (ref. 7).

The ambiguity in sign in the last expression is removed when we
choose either right- or left-handed circularly polarized light.
Of course, for linearly polarized light, a; and a, are in phase
2 _ !b_lz

so that with |b no net angular momentum is propagated.

n
We also add in passing that the second term in Eq. (3a) is added
to ensure the reality of A= K*. A plane wave traveling in the
opposite direction (—ﬁ) is obtained by changing the sign of k.
Finally, a standing wave is described by taking a linear combina-
tion of the expression with +k and -k. Before moving on to the
multimode description of the radiation field, we will now select

a single polarization component of the field and decompose this

complex quantity in the form:

1

a, = ———— (wgq. + ip.)
J ] 3
¢4eow2
(5)

*
a., = 1 (wg., - ip.)

J ) J J

4eow

Under this transformation of variables, the energy and momentum

densities become:

2 2 2
p: + w g’
u,:—-J—-—.——-J-:H'
] 2 ]
(6)
5og
gjc k




so that as far as energy and momentum considerations are concerned,
the radiation field can be treated as a simple harmonic oscillator

obeying Hamilton's canonical equations of motion:

. BHj
q. = =
J Pj
(7)
° "\Hl
= - 2
Py 3q

®
Turning now to the multimode description of the field, we impose
periodic boundary conditions by introducing the triad of integers

Rl, 22, and 23 into the relation:

3 = _ 2 5
k% = (kx, ks kz> = = <zl, %o 23> (8)

For economy in notation, we will henceforth use the symbol % to

imply this triad, and all Fourier sums will be treated as:

XX DX (9)

P S 3

Moreover, the orthogonality relation:

) B -> -
L L AL l(kx—k 1)er .
f f f e L dxdydx = V1 (10)
0 Y0 Y0

taken over a cube of volume V = L3 will guarantee that each mode

will contribute independentlyT to the total energy and momentum of

the field.

tOf course, this lack of cross terms in adding up the total energy
of a system is the whole idea behind normal mode decomposition.
Also, choosing plane wave eigenfunctions, orthogonal over cubic
geometry, is merely the simplest way to proceed. Ultimately, we
will work with the mode density, in which case the size and shape
of the cavity will not appear.

- -




We are now in position to put all these pieces together.

Starting with the multi-mode description of the vector potential:

3

-+
Z(?,t)==§j§jazgelklﬁr + complex conjugate (11)
2,0

and introducing the canonical variables 9y and Pio through the

relation:
a, = —= (o + ip.
po T T/ Y90 T Pys (12)
VQE sz
R R

we may now list the expressions for the total energy and momentum

of the field in the form:

- 02 4 w22
— _ Lr 230r
v %%260"%%0%0 %;f-: 7

[ ’

%,0 Lo
2e \Vw H

5 0" "8 _¥% ~_ 20 7
¢ ‘%Z—E‘— 200y =L 5> Ky

1Y £,0

These equations indicate that so far as energy and momentum are
concerned, the radiation field may be considered as a collection
of oscillators, each contributing (per mode) to the total energy
and momentum. We point out here that a quantum oscillator's level
of excitation is given by HQU = ngg‘hwg, and when this condition

is inserted into Eq. (13), there results the conclusion that a

radiation field may be treated as a superposition of discrete




3,

photons, n per mode, each possessing energy how,, momentum'hwg/c

Lo 2

and angular momentum #h.

(B} Interaction Between an Atom and a Radiation Field.- A

complete description of the emission and absorption of light by an
atom influenced by a radiation field is well beyond the scope of
this paper. The reader, intevested in the details of the process,
is urged to consult references (7-10). We present here only a
bare outline of the approach insofar as it related to the photon
counting distribution.

Starting with the complete Hamiltonian for a charged particle

in an electromagnetic field:

(+ K)2
:_.P_:___;.__.
JH 23 + HR + eV (14)

2

we neglect the term in e” and use the gauge condition divA = 0

- to- reduce this to: -

H = HA + HR + HI (15)
where H, = EE + eV is the Hamiltonian of the atom, H ==§:§:II
A 2m ’ R 2 G L0
is the Hamiltonian of the radiation field, and H; = - % K-E is

the interaction Hamiltonian. Combining the first two terms into
the unperturbed Hamiltonian HO = HA + HR’ we next treat HI as a

perturbation and attempt to solve the Schrodinger equation:
_ LW
(Hy + HI)lw> = ih =% (16)

Using the method of first order perturbation theory, we attempt

an expansion of |y> into a linear combination (with time varying




coefficients) of the eigenstate ]wg> of the unperturbed

Hamiltonian, known to satisfy the equation:

H0|¢n> = If -~y (17)

ly> =Y, c, (t)e |¢g> (18)
n

)

and the probability of finding the system in a state |wg> is:

ICn(t)|2 = |<wglw>|2 : (19)

-

Assuﬁing then that the combined system, atom plus radiation field,
‘begins in some initial state, |i>, Eq. (18) implies a set of
coupled equations for the probability amplitude (Cn(t)) from which
one can determine |Cf(t)|2, the probability of finding the combined
system in the final state |£>. Summing over. all final states, and
making a numbe£ of simplifying assumptions (refé. 8, 9, 10), one

ends up with Fermi's "golden rule" for the probability per second

for a transition in the form:

ap . 2 12 : :

3 ¥ | I<elugli>]® o(Ep) (20)
Here, p(Ef) is the density-in-energy of the final states, and
<f|H;|i> represents the matrix element of the perturbation
Hamiltonian between the initial and final states. When applied

to the problem of an atom in a radiation field, one must distinspish




between the cases when only the atom and both the atom and the
radiation field are treated as quantized systems. In the former,
the semi-classical treatment, one can correctly deduce Einstein's
B coefficient for stimulated emission and absorption in terms of
the electric dipole moment taken between the initial and final
wave functions of the atom. On the other hand, when one also
guantizeg the field including the zero point fluctuation, then
Eg. (20) also predicts the existence of Einstein's A coefficient
for spontaneous crission.

(C) Photon Counting Statistics.- The consequence of Eg. (20)

that is of importance to us is that it leads (ref. 8) to the
result that in a short time, At, the probability of ejecting an
electron from an atom on the surface of a photccathode is propor-

tional to the incident intensity of the light, I(t). That is,
P, (t,t + At) = BI(t) At (21)

For sufficiently short times Po(t,t + At) = 1-B I(t) At so that

]

in an interval (0, t + At) there are but two ways of releasing

n photo-electrons, given by:

Pn(O,t + At) = Pn_l(O,t)BI(t)At + Pn(O,t)(l—BI(t)At) (22)

Subtracting Pn(O,t) from both sides and dividing by At before

passing to the limit, we can write:

ap_
—5 = 8P | (1) - BI(B)P_(t) (23)

-10-



The solution to this differential-difference equation is:
t ' 1

~gfF1 (e at

[ﬁgti(t')dt‘]ne

n!

p (t) = (24)

Now, if this process were carried out a number of times over
similarly prepared realizations of the field, the average over

this ensemble would lead to

.Gw(sw)ne~6w

Pn(t,T) = = P(w)dw

(25)

where

t + T
W =f I(t') dt'
t

and P(w)dw is the probability for w to lie in the range (w, w+dw).

(D) Mode Density.- So far as the question of density of

radiation modes is concerned, we can start from one of several
points of view. From the viewpoint of wave optics, light of wave-
length A emerging from a slit of width Ax can be expected to
produce interference and diffraction effects over an angle Aa

such that Ax Ao ~ A. Extending this notion to the elemental area

As = AxAy we see that:

Ao AB ~ %—- = 42 (26)

-11-




In terms of the "coherence area", this can be written as:

2,2
A2
AR~ K5 T A | (27)
2

Further, if light proceeding from As has a bandwidth Av then

there exists a "cohorence time", At ~ 1/Av, corresponding to a
"coherence lencth", 4% = cAt ~ c¢/Av. Dividing by two to take

into account the two independent polarization states, we now write

for the "cohercnce volume:

2
_ABAS  (cht)r? 1
AV = == = 55q = 2 (28)
2A00 — Av
C

In a volume V, we expect to find AN = V/AV modes, or in terms

of mode density:

2
N = 0—— = (2)(a0) L. (29)

3
» c
For isotropic radiation, this reduces to the familiar expression:

_ Bwvz

AV c3

(30)

From a purely quantum statistical point of view, the elementary

cell size in phase space is given by:

AxAp, Aybp bzlp, - h, (31)

-12-




so that for a beam of photons of momentum p = E% in a solid angle

AQ about p we have:

3 3 _
AxAyAz ~ 2h = —3 2h (32)
PAPAR DY avag
c

Bividing by two to account for the two orthogonal polariza-

tion states, we end up with, again:

AV = ———— (33)

It is important therefore to know how many spatial and
temporal modes of the radiation field interact with the photo-
detector. We shall see that a single mode of chaotic, thermal
radiation, and stabilized laser radiation lead, respectively, to
Bose-Einstein and Poisson photocount distributions. For the case
of several radiation modes, one needs to calculate the probability
distribution for the sum of séveral random variables leading to

multiple convolutions.

IT. COMPOUND PHOTOCOUNT DISTRIBUTIONS

It is clear in view of the preceeding discussion that when
using a.quantum detector, one always has a Poisson process
governing the current flow. That is, the number Nt of elect;oﬁs
flowing in any interval (0,t) is a random variable. If the time-
space envelope of the projected EM field |V(t,r)|, (0,t) is given,
then the probability density for Nt = k electrons to flow in this
interval is

=] 3=




t 2 k t 2
[ Blv(t,x)|” dt drl™ - B|V(t,r)|* dr dar
T ¥ S T B 2

(34)

If on the other hand the quantity !V(T,E)l is random or has a
random component, then eguation (1) is a conditional density and
must be written as PNt(k/|V(T,£)|). To find PNt(k) requires the

additional averaging

P (k) = <P [k/|V(t,r)|]> (35)

N, N, |v(t,x) |
For the purpose of this discussion we will assume that the integra-
tion over the detector surface merely yields a constant (e.g., a

point detector) and that we can write

2 t 2
Biv(t,r)|© dt dr = « la(t)]“ dr
AY0 o 0

with o = n/hv, n the quantum efficiency, and [a(’r)[2 the
instantaneous power in the received process. Notice that |a(T)|
is the envelope of the received process and that Eg. (35) really
amounts to performing the final average over the statistics of
the envelope.

In most communication problems (and the ones which we will
consider), the function a(t) can be expressed as the linear sum’
of a known signal s{(t) and a noise process n(t). The signal may
also contain a stochastic parameter, o, to represent a channel

disturbance such as fading. As is common at lower frequencies,

-14-




the component n(t) can be accurately modelled as a Gaussian noise

process.

Hence, we will assume that a(t) can be written as:
a(t,0) = s{t,s) + n(1)

which is the complex envelope of a deterministic signal plus a
narrow-band Gaussian noise process, o (1), centered at some high

frequency fo;

iwaOT
a{t,0) = Rela(t,0)e

].

It is also meaningful to expand a(t,0) in a complete crtho-

normal Karhunen-Loeve series (ref. 11):

i

a(t,o)

f;) a; (o) <bi(T)

;:;0 (s;(0) + n;) ¢, (1)

having the following properties:

(1) The {¢i(1)} are solutions to the integral <~ xtion:

t
Xi¢i(u) =/c; Kn(u,V)¢i(V)dv
where

K (1,v) = E{n(u)n* (v)]

is the covariance function of the noise and is a real function.

=15




I

t
(2) a, (o) £a(T,O)¢§(T)dT = (a,4;)

= (Sr¢l) + (n,(i)i).

(3) The equality is in the sense of "limit-in-the-mean".

(4) (d)i,d)j) = 6ij

(5) The ai(c) are independent-Gaussian random variables, when
conditioned. on 0.

The generating function of this process N, can +hen be written

as (ref. 12):

t .
a.g Ia(t,a)lzdt[eu—l] o éiélai(o)lz(e“—l)

M. (s) =E|e = E| e
Ny

which, using property (5) and reference (13) reduces to:

@ [ a[ai(o)lz[eu—l]]
M. (s) = I Ele

. als (@ ]2 (eM-1)/11-an (eH-1))
= 11 & (36)
=0 1-axi(e“—1)

At this point, the variable o will be suppressed, although it must
be considered as a conditioning variable when encountered in

practice.
Notice that MNt(s) is a product of identically distributed

functions. The inverse transform of the ith component is:

-16-




~als, |2
k. : i

(ad;) * 1+ ak; —a[silz
Py (k) = e - Lki (37)

£y (1 + axi)l + kg ek (1 + ary)

where Lx(y) is the Laguerre polynomial.

(A) No Additive Noise.~ In the limit as Ai + 0 Eg. (37)

approaches:
k.
s, 121 s
[a]s ~ols,
lim Py (k) = —pp— e
A. =0 t. i’
i i
and
5 2.k Ei 2
[o ;;%Isil 17 -a i=0]si| (aES)k ~aEg
Py, (k) = KT e = xr ¢ (38)
. - @ - - o 2 N
where k = 'XO k; is the total count and Eg = iE |si| is the total
i= =

signal energy in the (0,t) interval. Thus the deterministic
. signal alone yields a Poisson distributed count. This, of course,

could have been deduced immediately from Eqg. (34). Notice,

however, ﬂmtﬂwnlﬂjz=0,
ki
( (ad;) ( ,
P (k.) = 39)
Ne. P ettt R A

1l

and each of the coordinate components is Bose-Einstein. distributed

(ref. 4).

’.-17_




In summary we see that; the signal alone can be considered
to be Poisson distributed along each of its coordinate axes in
Hilbert Space; Gaussian noise alone is Bbse—Einstein distributed
along a particular set of coordinate axes in Hilbert Space; when
signal is added to the noise the resultant process is distributed
according to Eq. (37) alceny each of the coordinate axes determined
by the noise alone.

(B) Band-Lin: -ed White Gaussian Noise.- An important case

occurs in communication theory when the signal and noise are

passes through a filter before detection. We will consider the
case where the process a(1r) is band limited by a rectangular filter
with bandwidth 2B. We will also aséume that the noise was
initially white, with spectral density N -

It has been shown (refs. 12, i3, 14) that when a process is
band limited and then observed over a time interval (0,t) the
Eigenfﬁhctions are prolate sphéroidal wavefunctions. It has also
-been shown that the first (2Bt+l) of these functions accurately
approximate the original function. This appears valid for values
of 2Bt as low as 3 and 5 (ref. 11). Therefore, it is a good
engineering approximation to assume that the eigenvalues associated

with the first (2Bt+l) coordinates are each N with the remaining

ones being zero. The generating function, MNt(s) in Eg. (3) then

exp a(s,s) (ef-1)
~ - aN (ef-1)
My (s) = IBE + 1 (40)
t [1 - o (e"-1)]

becomes:

=18~



with the corresponding probability density being

-a({s,s)

k QA5 5T
(k) = (aNo) el * OLNo L2Bt -0 (s,s)
£ (1 + aNO)k + 2bt + 1 k aNo(l + aNO)

Py

(41)
23t

w\ne.ve, Ll\’ /s '/‘Ac, Ln7.vu~r<_ -func.lr.,,n’

We will now consider some limiting forms of Eq. (41).

(C) No Signal.- In the absence of signal, Eq. (41) reduces

to:

)

k
o ) = 2Bt + k 1 2Bt + 1 aNo
N k 1l + aN 1 + aoN
t e} o)

which is a negative binomial distribution. There are two important

1imi£ing cases for this distribution:

(an ) ¥
(1) Limit P_ (k) =
2Bt » 0 Mt (1 + aNo)k + 1

For 2Bt << 1, there is only one significant eigenvalue, the
average value. Since this occurs when t << %ﬁ, it can clearly
be related to the approximation

&

t 2 oy 12 |
./.Ia(T)I dt = |a(0)|“t = At (42)
0 ;

using the mean value theorem for integrals. This latter approxima-
tion is commonly used to obtain this result but lacks the insight

as to the meaning or the range of validity.

-19-




B
»l

[ 2Bt N ]k ~a28tNo
(2) Limit Py (k) = T ©
2Bt large t ‘
aNO << 1

Notice that since 2NOB is the noise power, ZBtuNO is the total
noise energy in the (0,t) interval. If we write this as It, we

have:
t s —
Jr ala(t) | dt = It
0
where T is in fact the time-averaged noise power

I =

.

i

t
f ala(t) {2 dt
0

Thus, for large 2Bt, there is a smoothing of the fluctuations in

. the noise process, and Poisson statistics prevail. The condition
aN_ << 1 is a little difficult to interpret, except that it implies
there be much less than one noise count per degree of freedom,
which is easily obtained in practice. If one recognizes that a
narrow optical filter has a bandwidth on the order of 1A at

visible wavelengths, or about 100 GHz, it is clear that large 2Bt
is the most common form of operation. 2Bt will be comparable in
magnitude to the ratio of the optical filter and system bandwidths.

Further, since almost all noise has a thermal origin,

=20=




is satisfied at optical frequencies. Actually, this is true
assuming one mode of operation. However, for the purposes of this

discussion we have considered a plane wave, or one spatial mode.

(D) Signal Plus Noise.- For this case, there are also two
limiting conditions for Eqg. (41):
X ~-o(s,s)
(uNO) 1+ aNo —a(s,s)
(1) 1im P.. (k) = e L L
2Bt + 0 Nt (1 + aNO)l + k k uNo(l + aNO)

)
As in the case for no signal, the probability density reduces to
that of an individual coordinate, Eg. (37). Again, this can be

interpreted @$§ the zero order eigenvalue or average value, as in

Eq. (42):
[a{2BN_t + (s,s) 11K ~a{2BN_t+(s,s)}
(2) 1lim P, (k) = . e
2Bt large t :
aNO << 1

As might ke expected from condition (C-2) and Eg. (38), the
limiting condition for large 2Bt and aNo << 1 corresponds to a
Po}sson-distributed signal plus independent Poisson-distributed
noise. Since this is the most common condition that one encounters
in practice considerable effort has gone into exploring this

approximation (refs. 17-20).

(E) An Equivalent Eigenspace.- Let us re-examine Eq. (37)

and (41). Equation (41) is obtained as a (2Bt + 1l)-fold convolution
of probability densities in Eq. (37), where all the Ai's are equal

to No‘ This can be written as:

-21-




K, ~als; 5
2Bt (aN ) * 1+ aNg —alsil \
Py, () = & T+ k; © Ly, \aN_ (T + o )} (43)
t 1=0 i o o
(L + aN_)
o
2Bt
where () denotes a (2Bt + 1) fold convolution. Notice that the
i=0

only way in which the signal enters is through the energy (s,s).

Now

t 2 )
(s,s) =./. |s(t) | dar .
0

and since the signal is band limited to +B, we can partition the
(0,t) interval into (2Bt + 1) equal At intervals where (2Bt + 1) AT

= t. We can then closely approximate (s,s) as:

2Bt 2
(s,s) =  |s.(jaT)|"AT; § =0, 1, 2, *++, 2Bt
j=o
2Bt
. We can also write k as k = 'ZO k. where kj is the contribution
J:

of the'jth interval to the total count k. Equation (41) can then

be decomposed into a (2Bt + 1)-fold convolution of the form:

~

. —a|s. | 2aT

3 -
2Bt (aN_) I+ aN ( oclsj AT
e Lk

PNt(k) = .@0 K.+ 1 . \aN (T =+ aNo)>
=0 (1 4 an ) 3 o

2
|

(44)

Notice that Eqg. (44) is equivalent to Eg. (43) and would be

identical if Isil2 lz

= [Sj AT for all i = j. On the other hand,

-P 2




Eg. (44) is meaningful as representing a processable signal formed
from independent samples as opposed to an abstract eigenspace.

For the particular case where the noise process is wide sense
stationary and 2Bt is large, (See, for.example, reference (11)),
one can approximate the eigenfunctions by harmonically related
cissoids, and Isil2 and N, represent the Fourier coefficients of
the power density spectrum. Equations (43) and (44) then expreés
the duality of signal processing and design in both time and
frequency.

We can elaborate on this duality using the time-frequency
representation first considered by Gabor (ref. 21), Figure 1. The
received process a(1) considered, exists over the interval (0,t),
with frequency components primarily contained in the interval
(-B, +B). This is a Hilbert space of (2Bt + 1) dimensions which
can be considered eithér as intervals of bandwidth % in frequency or
dﬁratign %E in £ime. Hence, Qé can observe the count kj by lookin§
in the time interval (%ﬁ' 15%—l> with a filter of bandwidth 2B

or we can observe the count ki by looking in the frequency band

(—B + %, -B + & : l) for a time t. The first measurement is a sum
th

of, all the sgquares in the j column, while the latter is a sum
of all the squares in the ith row.
If the process is not wide sense stationary, we can still

use Parseval's Theorem to write (s,s) as:

2Bt
(s,s) zf P(f) df = ), P(L Af) Af
0 2=0

e.=»23¢.=,




and write a density similar to Eq. (44). KZ would be the total
count in the band Af in the interval (0,t). However, one cannot
assign the rigorous definition of power density spectrum to the

noise and the noise coefficients.

We note, finally, that the most common statistical behavior
encountered in practice yields 2BAT>>1. Hence, condition (D-2)
applies to any measurement interval of length AT. Thus, the
observance of counts over many independent AT intervals is a sum
of independent Poisson variables. This interpretation was first
proposed by Reiffen and Sherman (ref. 17) on the heuristic basis,

but can clearly be shown to have a solid foundation.

III. SHOT NOISE PROCESSES
We have shown that a linear relation exists between the average
powér‘I'of thg radiation (over some finite aperture) and the rate
of flow of photons n. Thus, if n is a function of time, we can

write:

L I(t) = ‘h\)n(t) ‘ (45)

where h is Planck's constant and v is the photon frequency. Thus,
the detector of optical radiation can be represented either as an
instantaneous power detector or as an instantaneous rate detector.

This relationship is generally explained by postulating that each
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incident particle independently releases an electron with probability
n upon arrival at the photo-detector surface, the electron in turn
traveling to a cathode surface yielding a current "impulse" effect

at the detector output. Thus, the total output current i(t) is

due to the motion of a collection-of electrons, proportional in
number to the arriving particles. We can, therefore, write for

the output current flow, i(t):

i(t) =

MZ

| BlE -ty , (46)

=
]

where h(t) is the current "impulse" effect, th is the time of

th photo-electron, and Nt is the number of such

release of the m
elecérons occurring in the total time interval (-«,t). The func-
ticn h(t) has area equal to the charge of an electron, while Nt
is the counting statistic, discussed in Section II, of the photo-
electron emissions. Note thaf if we neglect space-charge effects
in the photo-detector, the t;avél time of each released photo-
electron is finite, which means that the function h(t) must be
time limited to some interval 1. That is, h(t) = 0 for t < 0 and
t 5 T, In.this case, Nt becomes the counting statistic:OQer the
finite interval (t-71,t). Sincé T is inversely related to the
detector bandwidth, T is relativeiy short (10—10 - 10_‘7 sec), and
can be considered a "delta function" with respect to most moduia-
tion waﬁeforms.b It perhaps should bevpointed out that if h(t)

is assumed to be a flat rectangular function over (0,1}, then
i(t) = N =N, and the detector output is precisely the counting

process of the received optical radiation. If, instead, a non-
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rectangular impulse waveshape is to be accounted for, then one is
forced into a closer examination of the processes described by

Eg. (46). This class of processes can loosely be defined as "shot
noise" processes (although the exact definition of the latter tends
to vary at different points in the literature).

As discussed in Section II, the parameter Nt is a random
variable depending upon the intensity of the received field. Recall
that if n(t) is a dasterministic function, Nt is a Poisson random
variable, with mean value given by the integral of nn(t) over
(t-17,t), and is a conditional Poisson random variable if the
intensity n(t) is a sample function of a continuous stochastic
process. That is, given any intensity function of the ensemble,
the counting process Nt is Poisson. With Poisson counting pro-
cesses the resulting shot noise processes are referred to as
Poisson shot noise (PSN). Some excellent discussions of PSN
‘processes are given by Rice (ref. 11), Middleton (ref. 2&), and
Papoulis (ref. 24). 1In essence, first- and second-order statistics,
such as probability dénsities, moments, power spectra, and correla-
tion functions have been well developed. For the conditional PSN,
the foregoing statistical characteristics can be formally attained
by taking subsequent averages over the PSN results. For example,
consider the power spectrum of the conditional PSN process in
Eq. (46), where the intensity n{t) is a sample function of an
ensemble of positive, random, stationary process N defined over

(-=,2). We formally define the time averaged power density

spectrum (ref. 25) of the shot noise process i(t) by:
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Ei(w) = lim & lzl (47)

5= E[] I, (w)
Tow 2T CHITT

where E is the expectation operator and IT(w) is the Fourier
Transform of i(t) over (-T,T). For the PSN processes, Eq. (47)

can be readily determined as:

Spen(®) = Lin T [N, + [og(0) |21 H(w) |2 (48)
where:
T
ﬁT =[T n(t) dt | (49)

and H(w) and @T(w) are the Fourier Transforms of h(t) and n(t),
-T < t < T, respectively. The subsequent statistical average over
N, and time average over T via the limiting operation, yield the

pewet aehSity séectrum for con&itional PSN processes:
S; () = |H@) |? [EM) + Sg(w)] | (50)

where SN(w) is now the time averaged power density spectrgm of

the stochastic intensity n(t). The foregoing results are somewhat
significant, since it is valid for any countingvstatistic |
generated from conditional poisson statistics and, therefore,
includes those discussed in Section III. Note that the specirﬁm
always takes the form of the intensity spectrum immersed in a
background of "noise" of spectral shape E(N)!H(w)lz. (For infinite

bandwidth detectors, H(w) = 1 for all w, and the above represents
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basically "white" noise.) This noise constitutes the "shot noise"
of the detector, and is due to the discreteness of the photoelectron
model. The intensity spectrum SN(w), in general, contains portions
due to desired intensity modulation, portions due to background
effects, and associated cross-spectral terms. These latter two
components constitute the "fluctuation" noise of the photo-detector
output. Since the spectrum in Eg. (50) has the form of a "signal
noise", there is a tendency to view the photo-detected output as
signal plus additive noise. The difficulty, of course, is that

the signal and noise are not independent, and usual "signal plus
noise" interpretations, familiar tQ communication engineers, often
lead to false conclusions (e.g., see Section IV.)

“It is often instructive to examine the "instantaneous" or
"short-term averaged" power spectrum of the detector output, which
can be viewed basically as the conditional spectrum of Eg. (48)
béfore“the.time”éveraging limi£ is taken. If we interpret the
27T interval to be the interval (t-t,t), instead of (-T,T), we sece
that the bracketed term in (48) will contain terms dependent on t.
Furthermore, if we include the fact that the electron functions h(t)
have time widths T much shorter than the time variations in n(t),
then the intensity nT(t) is approximately constant overr(tfq,t).

Its "power spectrum" is then a delta function and the bracketed terms
in Eq. (48) take the form [k_(t) +n°(t) (%%y—z)z][H(w)lz.V

That is, the "instantaneous" spectrum (power spectrum before the

time average is taken) has the appearance of a background shot

noise whose level varies with time, and whose "average" value

varies according to the instantaneous value of n(t). In
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this sense, the detector acts as an instantaneous "power" detector,
which is the accepted classical definition of photo-detectors. The
true frequency content of the shot noise is not exhibited, however,
until the time averaging is invoked. |

The foregoing discussed raises an interesting query that
cannot be answered from a spectral density point of view. If the
-shot noise process is to represent a true intensity detector, even
when n(t) is a stochastic process, then the statistical properties
of the shot noise in Eg. (46) must be related to those of the
intensity process n(t). When the intensity is a deterministic time
function, the relations between thg shot noise and its intensity
are well known. However, when the intensity is itself stochastic,
the manner in which the statistics of the intensity and the con-
ditional PSN are related is somewhat vague. For example, although
the first—-order probablllty den51ty of i(t) is difficult to write
in cloged form, 1ts characterlstlc function is immediately
available by making use of the known characteristic function of

PSN (refs. 12, 23, 24). Thus:

$; (w) = Ey [;xp }E; —lﬂl— n(p)h® (t-p) dé] - (51)
t _ -T ‘ :

where Ey is the average over the process N. One way to interpret

Eq. (51) is to assume infinite bandwidth detectors, and factor.'
the first term of the exponential summation. Thus:
¢, (w) = EN{ejwn(t)G[w,n(t)l} | (52)

1e
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where the G function represents the remaining factors. The average
of the first term along is precisely the characteristic function of
the intensity process N at any time t. Thus, the effect of the
function G is to cause a departure of}the first-order probability
density of i(t) from that of n(t). The conditions under which the
latter effect is negligible, and the shot noise process has
approximately the first order density of N, has been studied by
Karp and Gagliardi (ref. 26). In this latter instance, we can
say that the shot noise represents (statistically) the intensity
process. This representation can be related to the "denseness"”
of the photon arrivals; i.e., the average number of photons per
second. In fact, when the latter parameter is large, it can be
shown that the bracketed term in Eq. (52) is approximately the
characteristic function of a Gaussian random variable, with mean
n(t) and variance n(t). This infers that the conditional (on N)
pfobability deﬁéity of i(t) a£ any t approaches asymptotically a
Gaussian density, which again may be loosely interpreted as an
instantaneous "signal" n(t), immersed in additive, non-stationary,
Gaussian noise of variance n(t).

The relation between shot noise and its intensity can be
further investigated by consideration of the individual moments
of the two processes. The moments of the process i(t) can be

obtained from its semi-invariants, which are, for PSN processes:

t :
An(e) = [ needn(e) dp (53)
t=1
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The moments can then be obtained by the sequence of relations

o 2, 2 3
E(i) = A, E(i%) = XZ +-Al’ 3 +_A1A2 + Al, etc. For

conditional PSN processes, the An are themselves random processes,

E(id) = a

and the moments of i(t) depend upon the higher-order moments of
the process n(t). However, if the intensities are continuous, or
if the detector bandwidth is much larger than the bandwidth of

the intensities, the rth moments are related by:

E(i¥) = E(NY) + D(r) (54)

where D(1) = 0 and D(r), r > 2, is function depending upon the
higher-order statistics of n(t) and upon the function h(t). The
above relationship was investigated in reference (26). It was

&

- shown, for example, that if the function h(t) was rectangular

th

over (0,7t) the r moment of i(t) was approximately equal to the

rth moment of the intensity process N if:

photon arrivals 5 (55)

average number o€]>> r(r-1)
in T sec '

Equation (55) essentially states that the denseness of the shot
events (i.e., the average number of h(t) functions overiabping

the time interval of one function) must be sufficiently large for
moment representation. The right‘side of Eq. (55) sefves as a
rough rule of thumb for determining how large this denseness must
be for approximate equality of the rth moment. It may be recalled
(ref. 20) that for PSN processes (deterministic intensities).a

condition of large number of shot occurrences is required before

the PSN loses its discrete nature. Equation (55) can therefore

=31-=




be interpreted as the statistical equivalent of this statement;
i.e., the condition under which the conditional PSN begins to take
on the statistics of its intensity.

By using Eg. (54), it is also possible to relate the fluc-
tuations in the detector output i(t) to those of the intensity n(t).
Specifically, if we define the signal to noise ratio (SNR) of a
positive process as the ratio of its mean value squared to the

variance, then Eq. (54) leads to the fact:
SNR of i(t) £ SNR of n(t) ‘ (56)

which implies that the percent fluctuations in the shot noise

are always at least as great as those of the intensity itself. We
make}this point mainly because the foregoing definition of SNR is
vcommonly used in assessing signal quality in communication system
analysis.

It may be noted that the conditions for which the intensity
is represented by a shot noise process are also useful in "building
up" intensity models as shot noise. This type of shot noise modeling
has been used for studying radiation scattering and perturbation
effects, (refs. 27, 28) in which the impulse functions h(t) were
reinterpreted as wave packets.

With the statistics of the conditional shot noise process
identified (at least in first- and second-order statistics), the
problem of optimal processing procedures at the photo-detector
output can now be properly formulated, and in some instances,
solved. For example, the problem of optimal linear filtering of

the process i(t), so as to minimize the mean squared error from
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the desired intensity, was considered in reference (26). For
certain types of pulsed intensities, as»in PCM communications
optimal operations maximizing output signal to noise ratios have
also been considered (ref. 29). The application of estimation
theory (ref. 30), tracking operations (ref. 31), and detection
procedures (refs. 17, 18, 20) to the photo-detector shot noise
output has been under study, and appears to be a problem area of
considerable interest from Eoth a practical and theoretical point

of view.

IVv. DIGITAL COMMUNICATIONS AND OPTICAL SYSTEMS

The availability of an easily generated, extremely narrow
pulse in the optical region of the spectrum suggests a natural
application to communication by digital methods. This notion, in
turn, has fostered an increasing interest in the application of
both.classicalvdetection theory and information to optical systems..
Since the output of a photodeﬁector is a sequence of electron counts,
the detection problem is formally one of decisioning in the
presence 6f genéralized poisson statistics. While early approaches
to the problem basically were confined to pure Poisson counting
(refs. 32, 33), more recent attention has included the_éeﬁeralized
Laguérre counting processes in Section III.

The formulation of the general M-ary detection problem 7
involving counting statistics proceeds as follows. The ttanémitter
sends a*signai whose intensity is modulated with one of a set of M
possible intensities, each-T sec. long. The received signai'is:

corrupted by background radiation, which we assume here is white
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Gaussian noise of level NO watts per hertz per unit area, and
optical bandwidth B. The output of the photodetector at the
receiver is then a time varying process of electron counts,
obeying a generalized Poisson distribution, as in Section III.
The receiver observes the counting processfor (0,t) and decides
which of the M possible intensities is being received. Since K
binary digits can be uniguely encoded into 2K = M possible
intensity waveforms, a correct decision effectively decodes K
data bits. The foregoing model can be cast into a discrete format
by subdividing the interval T into AT sec intervals (AT »~ 1/
information bandwidth) and‘associating a signal energy component
sji for the jth intensity and ith interval. (That is, Sji is
the total energy associated with the 2BAT samples, or modes, of
the Karhunen-Loeve expansion of the jth intensity during the ith
AT interval.) Under a fixed energy constraint, we require

.E gqi = E for all gq. The discrete problem then is to detect which
of the possible intensity vectors §q = {sqi} is controlling the
counting process by observing the sequence of independent counts
k = {ki}, i=1,2,>++,M(= T/AT). Under a maximum likelihood
detection criterion, and a priori equally likely signals, the
optimal test is to form the likelihood functionals Aq(&) and
select §q as being transmitted if no other Ai(&) exceeds Aq(&).
If a likelihood draw occurs (more than one Aq(g) is maximum) any

randomized choice among the maxima can be used. From Eg. (37),

the likelihood test is therefore equivalent to comparing:

2BAT (—sqi)
Lk. N (1 + aoaN_) (57)
o o)
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for all g, where Sqi is now a normalized signal intensity obeying

the constraint qui = E = N. In typical operation, 2BAT >> 1

(i.e., the optical bandwidth is much greater than the information

bandwidth) and Eq. (1) is approximately:

(58)

After observing k, examination of the above set of'{Aq} for
maxima is equivalent to the comparison of the set of functions
Zki log (1 + i%i), where K = 2BNOAT represents the noise energy
per counting interval per unit area. (Recall it was previously
show9 in Section II that under the condition 2BAT >> 1 the counts
1ki are Poisson variates so that complete statistics of the
;foregoing test can be determined;)

An indication of the performance of a detection test is given
by the divefgence, or "expected distance between hypothesis".
The divergence is formally defined as:

Dy = E£ (qulj) - E.k_v(qulq) (59)
where A, = Aj(E) - Aq(&) and Ek(A(j) is the cq@ditional average

Jq
of A over k given the intensity 55 Abend (ref. 18) had shown

that for Poisson counting, using the functions of (58) and M = 2
(binary detection), the divergence normalized by the variance of

A, is maximized by a "pulsed" type of intensity, in which the
évailable signal énefgy is wholly concentrated in a single counting

interval. That is, an intensity set defined by:
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_s_q = {Néqi} (60)

where § 5 is the Kronecker delta function. Kailath (ref. 19)
extended this result by showing that under a total energy constraint,
other suitable forms of distance are maximized by similar pulsed
intensities. Gagliardi and Xarp (ref. 20) applied an average
divergence criterion to the general M-ary poisson detection pro-
blem and again showed the optimality of the intensity set of

Egq. (60). 1In the latter reference, the intensity set that maxi-
mized the probability of correctly detecting the true intensity,
rather than maximizing divergence, was also considered, and shown
to correspond to the pulsed set in two special cases, (1) M = 2
with*symmetric intensity sets, and (2) any M and low intensity to
noise energy ratio.' However, the determination of global optimal
intensity sets in the pure Poisson case, based upon dgtection
probability .still remains a difficult task. It has been conjectured
by many that the pulsed set of Eg. (60) is, in fact, a global
optimal set, but to the authors' knowledge a rigorous proof has
not been shown. The optimality of the pulsed set, even under
this special crition, is somewhat significant, since it indicates
the importance of intensity waveshape in digital system design.
This,iof course, is partly due to the general advantage of
orthogonal signals in detectability, a property afforded by the
disjointnesg of the pulsed set in Eg. (60). The use of signals
placed in adjacent time slots is in essence a pulse position
modulated system in which each position corresponds to a digital

word. The dual of such a system (a frequency keyed system), which
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also retains the orthogonality property, can similarly be
generated by redefining the expansion fqnctions of the received
field (ref. 34).

It should be pointed out that if the condition 2BAT >> 1 is
not valid, care must be used in accepting the pulsed set of Eq.
(60) as an optimal intensity set.  In particular, the Poisson
assumption and the use of Eg. (58) is violated. For the case of
2BAT << 1, the divergence in Eg. (59) must be obtained by
averaging terms as in Eg. (57) over the Laguerre densities. If

this averaging is carried out, Egq. (59) takes the form:

M s .
D.=C n1<——q—l->+ I(—1i>
q3] {1=l ° No i=1 ° No
M S . S..
-2 I I _gr J1 (61)
i=1 © No '

where Io(k) is the imaginary Bessel function of zero order and C
contains terms common to all g and j. Now it is no longer
immediately evident that the pulsed set of Eq. (60) maximized D 5
The last term, however, is minimized if either sqi = 0 ox sji = 0
for all i, which suggests a disjoint intensity set, but it is not
evident that the first terms are maximized under the samé condition.
The difficulties of this problem are quite reminiscent of similar
difficulties in attempting to find optimal signal sets in non— 
coherent additive Gaussian noise channels. |

When the pulsed set of Eg. (60) is used, and the general

Laguerre counting is assumed, the analysis procedures are similar

to the Poisson case. It is easy to show the monotonicity of
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Laguerre functions with respect to their indices. It then
Lo .0 /N % (N

> ) 2. = i

follows from Eq. (57) that.Aq ¢ hyif qu (No) p Lki (No) which,

in turn, is true if k_ 2 k,. Hence, the maximum likelihood test

q
need only count over each interval, selecting the signal corres-

ponding to the interval with the largest count.

Error Probabilities with Pulsed Intensity Sets and Poisson Counting
The performance of the pulsed intensity set in M-ary detection
can be evaluated by considering the error probanility when Poisson
counting statistics are assumed. This can be obtained by noting
that for the pulsed intensity set of Eq. (60) the log of the likeli-
hood functions for each ki constitutes a set of independent Poisson
random variables. The variable for kq has intensity (N + 2BaN_AT)
if the qth intensity was sent, and has intensity K = 2BuNOAT
otherwise. Recall that if the qth intensity is sent a correct
decision will be made with probability 1/(xr + 1) of the log likelihood
equals r others and exceeds the remaining M-(r + 1). Therefore,
upon considering all possibilities, the error probability can be

derived as (ref. 20):

x}

Xx-1 .t =K M
. l:z Ee ] o [(1 +a) ‘1:, (62)

o” (N + MK) S [(N y )X o~ +‘K)}
x=1
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where:

a = £

!
H

rfl‘;ﬁ

gX
x-1

x! >
t=0

The function PE(N,K,M) has been plotted by Pratt (ref. 32) for
M = 2, and recently a digital computation has been generated (ref.
23) for a complete plot of the function. An exemplary plot is

shown in Figure 2 in which PE(N,3,M) is plotted for various M as

a function of N. It is important to note that P_ depends on both

E
the normalized signal energy N and the normalized noise energy K

in the counting interval, and not simply on their ratio. This
fact.-is emphasized in Figure 3, in which PE(N,K,Z) is plotted as
~a function of K for 2 fixed ratios N/K. This dependence on both
signal and noise energies distinguishes the Poisson detection
ﬁroblem from the analogous coherent Gaussian channel problem.
Note that the interfering noise energy K depends only upon the
background energy in the interval AT, which is the width of the
transmitted intensity pulse. The prime advantage of Poisson
systems is precisely their ability to remove the effect of back-
ground noise by making AT small, and has been emphasized in
previous reportings (refs. 36, 37).

‘The actual dependence of PE on the parameter AT has been
considered (ref. 38), and the improvement in error probability
with decreasing AT has been demonstrated. The improvement, of

course, is made at the expense of information bandwidth and peak

power, both inversely proportional to AT. Surprisingly, the

-39~




improvement is quite small at low values of N, and the increase in
bandwidth may not be worth the decrease obtained in error proba-
bility. The effect on error probability of additive extraneous
thermal noise in the decisioning system and statistical charac-
teristics of photomultipliers has also been considered (ref. 38).
For Laguerre counts, Eg. (62) must be rederived using the
Laguerre densities discussed in Section III. Recently, general
bounds or the error ?robability in this latter case, using the
orthogonal (disjoint) éignal‘intensity sets, have been reported

(ref. 34).

Information Rate of a Poisson PPM System

_We have so far analyzed only one aspect of system performance,
li.e., error probabilities. The actual information rate that the
link achieves is another important design consideration. As
" stated, the transmitter sends optical energy in one of M time
intervals, wﬁich is AT seconds wide, thereby transmitting one
of M possible signals in MAT seconds, or at a rate log2 M/MAT bit/s.
The receiver correctly determines the true signal with probability

1-P_ and is in error with probability P

E Because of symmetry,

E*
the erroneous signal may be equally likely interpreted as any of

the M~1 incorrect signals. Thus, the overall channel may be
depicted as an M-ary symmetric channel, in which each of the M
possible transmitter signals is converted to itself with probability
l-PE and converted to each other signal with probability PE/(M—l).

The information rate for such a channel is known to be:

log2 M+ Po log2 [PE/(M - 1] + (1 - PE) log2 (1 - PE)

H = MET (63)
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Foxr convenience we shall denote this as:
H = C(N,K,M)/MAT {(64)

to emphasize the dependence of the numerator on the stated para-
meters. By using Eq. (63) and the families of error probability
curves as in Figure 2, the rate H can be evaluated by straight-
forward substituticn, Although specific curves for such a computa-
tion are not shown here, if suffices to note that if N and K are

-1

such that Pp < 10 =, then Eg. (63) is, to a good approximation:

H=~ (1 - PE) {logzM)/MAT]

= (log, M) /MAT - Py [(log,M)/MAT]. (65)
If we interpret the rate H as the source rate minus the equivocation
of the channel, then the PPM optical system behaves approximately
as if a source rate of log M/MAT is passed into a channel of

equivocation P, log M/MAT. As noted in Eqg. (62), even if K » 0

E

(no background-.interference), P, + exp (-N)/2, so that the

E
equivocation is not due entirely to the background noise.

The use of Eq. (63) and the previous equations are helpful
in determining the rate, given operating parameters. However, the
converse design problem, which is to determine particular para-
meter values that achieve a desired.rate, is not sg straightforward.
This is due to the fact that the rate.is a somewhat complicated
function of the parametefs. Wé shall consider here two aspects of

this design problem that have practical application under certain

operating conditions. First, the WOrd‘period T = MAT is held
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fixed while the information bandwidth 1/AT is allowed to vary, and
second, the bandwidth is held fixed while the word period is
allowed to vary. In both cases, we are interested in the relation-
ship between the rate H and the transmitter parameters N and M,

assuming that the noise power is held fixed.

Fixed Work Period
We assume here that AT is allowed to vary with M so as to
maintain T = MAT constant. Thus, the system "scueezes" more
signals into the T-second period as M increases. The resulting

rate is then:

H = C(N,K,/M,M)T ' (66)

”
‘where Ko, is the noise energy in T. Thus, the rate depends only
upon the numerator of Eqg. (63). With N fixed, increasing M
increases the source rate, but the error probability also increases

and eventually reaches an asymptotic value of:

' .N[K -1 + exp (-K,)]
P—(l+ T “r

exp (-N)
: o2 L)

for large M. The resulting system rate increases, ﬁo within a
constant of the entropy of the alphabet, log2 M/T.. Therefore, it
is clear that if the bandwidth is expendable, one will always
increase the system rate for large M by increasing M. In a
practical system, this implies that one should operate with as
wide a bandwidth as possible to fully exploit the capability of

the PPM system. We are, therefore, led naturally to consider the
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design of a system for an arbitrary rate H, when the full bandwidth

(1/AT) of the system is limited.

Fixed Bandwidth

In this case, AT is held constant (thereby fixing the noise
energy K in AT) so that both the numerator and denominator in
Eq. (63) depend upon M, and the rate degrades quickly as M increases
due to the log M/M dependence. A given rate, e.g., HO’ may be
obtained by many different combinations of N and M. Analytically,
these equivalent operating points may be obtained graphically
by noting that they are the values for which the numerator C(N,T,M),
considered as a function of M, intersects the straight line

H,ATM. By plotting these functions for various N, their inter-

0

section will identify (N,M) pairs which achieve the rate H One

0
may then decide on a particular operating point by invoking suitable
design criteria. For example, one may select the smallest M from

among the candidate pairs, which then minimizes the word period

T = MAT. Alternatively, one may choose to minimize the average
transmitter power per information bit, which is proportional to

N/C. In the latter case, therefore, one would select the operating
pair (N,M) for which N/C is minimal. The latter parameter is recog-
nized as the R-efficiency parameter (energy pef‘data bit) of a communi-
cation system (ref. 39). If the value of N/C, cofresponding to the
optimal (N,M) pair is tabulated, tﬁe results can be compared to
previously derived performance based upon the same parameter. This

type of comparison was considered (ref. 40) and it was shown that

the PPM system outperformed an optical heterodyne system for




sufficiently large M, approaching in fact the minimum £ generated
by the Gordon bound for quantum systems. This type of result
further emphasizes the importance of expending system bandwidth
(increasing M also implies increasing information bandwidth) to
improve overall performance. The effect of Laguerre statistics
(when the information bandwidth approaches the optical bandwidth)
and the effect of additive noise can be accounted for by modifying
these Poisson results (ref., 40).

The extension of the discrete model for optical detection,
assumed almost entirely in the aforementioned references, to
the continuous model has received little attention. In usual
procedures, the continuous case is generated from the discrete
by taking limits of ihfinitely small intervals. Although this
procedure can be properly structured to generate the continuous
version of the counting process, the continuous process repre-
éendiﬁé the ph6£bdetector outéut must be viewed entirely as a
shot noise process (see Section III). Unfortunately, such processes
have first order densities that are expressible only through
transforms of their characteristic function. Hence, the building
up of a general detection model based upon shot noise, rather than
discrete, processes would be severely hampered by the ihability to
express observable statistics. It would appear, however, that
shot noise qetectability cannot continue to be avoided when con-
sideration is given to operation with information bandwidths on
the order of optical detector bandwidths. This aspect of detection

deserves more attention in future research studies.
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V. ANALOG COMMUNICATIONS

The major portion of work in the area of analog communications
for optical systems, has centered on first- and second-moment
theory, spectral analysis, and signal-to-noise ratios. We have
already discussed spectral analysis for shot noise processes with
emphasis on signal representation. For the remainder of the paper
we will concentrate on trying to bring together some of these
ideas in a unified way, leaning heavily on physical motivation.

Before turning to the analyses required, it is very instruc-
tive to reconsider the behavior of a photodetector from a
phenomenological point of view. As we have already seen an
important parameter in a photodetector is the time AT over which

Vs

the intensity fluctuations remain relatively constant. This is
related to the bandwidth, B, of the optical signal by AT = %ﬁ'
When an electron is released from the detecting surface and flows
through the ensuing circuitry; there is always the fixed electron
charge e. This fixes the area of the resulting current pulse.
Hence, higher energy electrons will flow faster; the current
pulses will be narrower in time resulting in an increased frequency
response of the detector. .
Generally, one thinks of counting circuitry as Iiterally
counting each of these events. Oﬂ the other hand, oné can also
consider the following viewpoint: suppose we "match" the deteétor
reéponse, Bd’ to the incident radiation bandwidth, AT = %ﬁ = 5%5.
Then, each current pulse created will be approximately AT seconds

wide. Hence, at any time t, the effects of all pulseé from the

previous AT seconds will still be present. Therefore, if ki
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electrons flow in the interval (ti - AT{ti) than at the time t,
the value of the current can be approximated by ki %T’ or since
%% = ai(ti), i(ti) = aei(ti), which was shown earlier. If the
response of the detector were square pulses, this description
would be exact. On the other hand, the distortions occurring due
to end effects are the normal effects of filtering. The so-called
shot noise represents the fact that Ki is an integer, making
i(ti) take on discrete values, whereas the true I(t) would be
continuous.

The previous argument was intended to justify consideration
of the (2Bt + 1) Nyquist samples fof analog processes also. It
was shown in Eg. (55) that these samples can also be considered

statistically independent.

() Maximizing Signal-to-Noise Ratio for Direct Detection.-

For maximum likelihood detection, the optimum form of processing
consisted of weighting the counts on each of the (2Bt + 1).
intervals. We will, therefore, consider the form of processing
where eabﬁ kj is weighted by the number Bj. The processed signal

then becomes v, where:

v = ;i% BjKj' : (67)

As a criterion for signal processing, we will use the signal-to-

noise ratio defined as:

B4 (vl
O

s______©°
N 7 wvar [v]

=0 (68)
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Thus, the mean of v in the absence of noise can be obtained from

Eq. (37) and is:

_ LS i 12
E[V]lNO - = @ ;i; Bj]sj(jAT)} AT (69)

with the variance being:

R . 2 '
var[v] = a ;ZE Bj ;(ISj(jAT)] + No) )

AT (70)

12 ! . 2
+ o (N T+ 2No[sj(jAT)l AT

Thus, the signal-to-noise ratio becomes:

. 2
{a?ii lesj(jAT)[ AT}

r

2

S -
N
2 . 2 ' ) 1 . 2
o ;ig sj {<]sj(]AT)| + No> + a (NO + 2No|sj(jAT)| >AT}AT
| (71)
which can be bounded by using the Schwarz inequality. Hence:
< o s, (5AT) | %12 AT
ﬁ < - 2 T J ) T ] 2 (72)
j= lsj(jAT)| + Ny + a(N_® + 2No|sj(3AT)] ) AT
with the equality holding when:
Isj_(jAT)I2
6j = . 2 i 72 § N 2 (73)
[sj(JAT)[ + Ny o+ oa(N T+ 2Nd[sj(jAT)[ ) AT
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Notice that in the absence of noise NO = 0
Bt nk
SY <« . 2 _ _ s
(ﬁ> S ]sj(jAT)] AT = 0By = —5 (74)

j:’

This however, is the average number of photoelectron counts in
the (0,t) interval and is generally referred to as the quantum-
limited signal-to-noise ratio.

Let us now rewrite the right-hand side of Eq. (72) as:

s t als.(jAT)lZ AT
(ﬁ) < J . ; , 55— S aE_  (75)
J=0 1 + aN_ + 5 {ocNo + a No}
a[sj(AT)l AT

Recall now that aNO is the number of noise counts per AT interval
and for thermal noise sources is much less than one. In addition,
a[sj(jAT)l2 AT is the average number of signal counts in the jth

AT interval. Suppose, therefore, that we construct a signal:

=

Isj(AT)] Z%— for one value of j

0 for all other values of j.

Then clearly:

2 -
?—I lsj (AT) |“ AT = E

is not viclated, and in addition:
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<Q> ol S
2) = - SN O (76)
N oN  + (6N ) 2 S

0 o

oll
s

1 + N+
o

for all values of aEs > aNO. Thus, low duty-cycle operation is
preferable when maximizing the signal-~to-noisc ratio of detected
radiation in the absence of detector noise.

The addition of independent thermal noise with temperature T
at the detector output changes the variance in Eq.- (70). After
some manipulation to take into account the electron charge e, the
bandwidth and the load ﬁ, the signal to noise ratio in Eg. (76)

can be written as:

oE

5= S (77)
- aNO + (aNo) KT
1 + aNO + oF + 5
S e oE_ RB
s d

The quantity k'I'/e2 aES RBd is, in general, much greater than one.
Therefore, except under extreme conditions of temperature,
inpedance bandwidth, and signal level, a normal detector will be
"thermal noise limited" in dperation and S/N will be much less
than oE .

. s -

We have been considering the case where each sampling interval
represented one mode. If, in fact, each interval contained L

modes, then clearly we need only replace aNO by L aNO everywhere.

(B) . Direct Detection with Photomultiplication.~ We have just
shown that most detectors are inherently thermal noise limited

except under extreme temperature conditions. This was true because
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the current that wos rcolecasod by the suricce dwmodistely cncommtcerad
a theomal environmenbt. There are devices, prescently limited to tho
visible region of the spectruva which impart a preesuplification to
the photocurrent before the thermal environment is met.  The most
common device, a photomultiplicer tuboe, consists of a cascado ol
stages through which each emitted electron passcs and is amplified
many thousands of times. When the cffcct of an electron cmitted
at the cathode reaches the anode, it appears as anlactual current
pulse well above the anode thermal enviromment. It is, therefore,
possible to vicw the effects of individual electrons. These
devices are commonly referred to as "photon counters".

To first ordex, one can account for this amplification A, by
assuning an electron charge equal to Ae. Then we can see from
(Bg. (77) that the term which previously made the device thermal

<

noisc limited becowmes:

kT
2 2

A e aES RBd

Thus, if the gain of the device is such that the inequality:

A > Ll ~ 3 x 10°

5 E
e (OLES)RBd

is satisfied, it is again shot-noise limited. In practice, the
gain is a random variable and an "excess noise" appears because of
the finite variance of A. This, however, only causes changes on
the order of 20% or about 1 db, arnd for the purposes of this

discussion can be ignored.
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(C) Heterodyne Detection.- If the elcctric ficld of a
local oscillator is aligned coincident with the received signal
over the detector surface, then one can directly add the two

jw,t

electric fields. Thus, if we designate the signal by Eje 1

+ ¢ (t) and the local oscillator by Eloejw2t then:

juy (3AT) + ¢ (jAT) iw, (3AT)

'Sj(jAT) = Eye + B e

and:

|2 + 2|B | 1B, |cos{ (w~u,) JAT+ (FAT) )

sy Gamy |2 = |8 1%+ mp,

(78)

If the local oscillator is made large, then it can be shown that,
under these conditions, the density in Eg. (41) approaches a
Gaussian density with a mean value éf ZulEllIELO|COS{(wl-m2)jAT
+ ¢ (JAT)} (excluding the dc component) and variance aIELO!
multiplied by the bandwidth considered. Then, if the bandwidth
of the signal in Egq. (78) is 2W, and the bandpass of the detector
is greater than (wl~w2) + W, one can pass the detected signal
through a bandpass filter centered at (wl—wz) with bandpass 2W
and recreate the signal 2“E1EL0 cos {(wl—wz)jAT,+ ¢ (HJAT)}. The

resulting carrier signal to noise ratio will be:

S\ zalEllE D? alE® nlE)?

(N)het alB; ]2 ] hvW

which can again be recognized as the quantum limited condition.

~5]1~-




(D) Power Spectrws Anslysis.o Ao Section TIT, it was s

that the time cverayed novrey density spoectrzun of the cuvvant could

‘} I - Sw 1\. °
[N N(U,]

Since S (w) is the spectrum of & non-negative definite funclion

N

JOF]

(the normalized power), it can be written in terms of a dc and an

ac component. The ac component is, SAC(M) vhere:

=2,
SAC ((L)) - (Ti.-)C) @IVI (()_))

and n(t) has becen normalized to:

n{t) = n(L + m(e)); m(x) > ~1

b
g
!_.
cr
iy

T
/‘ m(t) dt = 0,
J o

and Gﬁ(m) the time-average power density spectrum of m(t).

Notice that the modulation index is included in m(t). For an
unmodulated source, such as noise, m(t) = 0, and only the shot
noise term and the dc remain. Thus, if we have a signal plus
additive noise impinging on the detector, where the average noise
rate is designated ﬁh, the power density spectrwm, minus the dc
terms, can be written as:

(0)] + =5~

2 2 = =y L =2
ST(w) = e ‘H(w)| [ﬂ(nn + n) + (nn) @M 5
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where we have also included the thermal noise contribution. 1If
we define the signal-to-noise ratio as the ratio of the total

signal power:

2

(enn)

- o, (w) dw
27 oL M

over the bandwidth of the signal, divided by the total non-signal

power over the same bandwidth:

1 2 2~ - 2KT
T uéf' [é |H(w) |“n(n + nn) + »i—] dw

W

then, assuming that lH(w)|2 is "flat" over the 2W' region of

interest:

— 2 1/
(nne) {ETT <I>M(w) dw} < (%)
2 — . = 2kT, o o )
te"n(n + nn) + R 1 2w ﬁ‘+ :2,+__2kT ]ZW

n e“Rnn

% (79)

where W is now the cyclic frequency. Notice again that if e is

replaced by Ae and the shot noise term 2nA2ezﬁW = 2nAel W > 4kTW,

DC
the device will be again shot-noise iimited. The term:

=
=3

np
2hvW

|

P
=

can again be recognized as being related to the guantum limited

condition.
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| SUMMARY REMARK

We have tried to present in this paper a review of the basic
concepts in optical communiéations viewed strictly from &
classical point of view, in the absence of any channel effects.
In this vein, we have viewed the received signal as an electro-
magnetic field and described its interaction with a photodetecctor.
We then described some of the fundamental properties of the
resulting current flow as seen by the communications engincer.

The treatment in this paper is not complete, since the
study of this problem has not finished. Consequently, some
portions have been given more emphasis than others, while some
have been omitted entirely. For example, in the literatﬁre the
topic of»continuous estimation for shot noise processes has
barely becn touched (ref. 13). The same is true for synchroniza-
tion in a shot noise environment (ref. 31), although this will be
fundamental to any sophisticated optical communications system.

What has been attempted, rather, was a presentation which
ansvered the guestions concerning the physical mocdelling cf the
system and a rcduction to the terms most useful for analysis.
Where such analysis had reached a level of conveying a reasonébly
complete understanding of an aspect of the problem, it was also
presentced. It is hoped that this paper is thorough enough to

motivate additional rescarch in this arca.
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